Pages

2025/09/05

UNNS Sequence DNA Explorer - Vibrant Edition V.1

UNNS Sequence DNA Explorer

Unveiling Nested Sequences - Launched 10:08 AM EEST, September 5, 2025

UNNS Insights

Attractor:
Nest Depth:

Sequence Ecosystem Mapping

Sequence Nest Type Attractor Pattern Layer

Trinity Framework

Telescope Observatory

🔷 Hierarchical Structure Overview of UNNS

🧱 1. Base Nests (2017 Formula)

The foundational formula of UNNS is:

MN=(M×N)+MN+(MN)+(M+N)

For a fixed value of N, this expression generates a linear sequence in M, producing integer values at specific positions. These values form the base layer of what are called UNNS nests.

🔍 Simplification:

MN=M(N+1N+2)

When M=kN, the result becomes:

akN=k(N+1)2

This is an arithmetic progression with a constant difference of (N+1)2.

✅ Proof of Integer Property:

Let M=kN. Then:

akN=kN2+2kN+k=k(N+1)2

This confirms that the output is an integer for all integers k,N.

🔗 Role in UNNS:

These base values (e.g., 11=421=8) serve as initial seeds for higher-order recursive nests or as inputs for modular filtering.


🔁 2. Recursive Nests (Recurrence Sequences)

Higher-order nests are built by applying recurrence relations to base nest outputs or directly to data streams.

📐 General Form:

an=c1an1+c2an2++ckank

Each k-nest depends on k previous terms. Initial values can come from base nests or external data.

🧬 Examples:

  • Fibonacci (2-nest): Fn=Fn1+Fn2
  • Tribonacci (3-nest): Tn=Tn1+Tn2+Tn3
  • Pell: Pn=2Pn1+Pn2
  • Padovan: Pn=Pn2+Pn3

These sequences can also be iteratively nested, though this is not explicitly detailed in the original posts.


🌌 3. Recursive Attractors (Dominant-Root Convergence)

Recursive Attractor is the limiting ratio of a k-nest sequence:

limnan+1an

This limit equals the dominant root of the sequence’s characteristic polynomial.

🧠 General Proof:

Assume an=rn. Then the characteristic equation is:

rkc1rk1ck=0

If r1 is the root with the largest magnitude, then:

anA1r1nan+1anr1

🌟 Specific Attractors:

  • Fibonacci: ϕ=1+521.618
  • Tribonacci: ψ1.839
  • Pell: 1+22.414
  • Padovan: ρ1.324

These attractors are the “resonance points” where nested sequences stabilize, as described in the September 4 post.


🧮 4. Prime Filters (Modular Detection)

Prime Filters apply modular arithmetic to nest sequences to detect periodic patterns.

🔢 Formalization:

Given a sequence {an}, compute anmodp. The result is periodic, with the Pisano period π(p) being the smallest k such that:

an+kanmodp

🧪 Example:

  • Fibonacci mod 5 has a period of 20.
  • Ratios mod p approximate attractors like ϕmodp.

🧰 UNNS Application:

Apply modp to base or recursive nests (e.g., MNmodp) to detect cyclic patterns in real-world data (e.g., market prices, seismic signals).

📏 Proof of Periodicity:

In Fp, the recurrence matrix has finite order, ensuring periodicity.


🧠 5. Detection Algorithms

UNNS uses algorithms like Berlekamp-Massey to detect recurrence patterns in data streams.

🧭 Detection Workflow:

  1. Input: Data stream S=[s1,s2,,sn]
  2. Fit Recurrence: Use Berlekamp-Massey to find the minimal linear recurrence.
  3. Estimate Attractor: Compute roots of the characteristic polynomial.
  4. Apply Prime Filter: Check periodicity mod p.
  5. Output: Detected sequence type and attractor.

🐍 Python Implementation:


UNNS Sequence Detector


import sympy as sp
import numpy as np
from sympy.polys.galoistools import gf_lindep

def berlekamp_massey(sequence):
    """Apply Berlekamp-Massey to find minimal linear recurrence."""
    # Convert sequence to list of integers (for simplicity)
    seq = [int(x) for x in sequence]
    # Use SymPy's gf_lindep to find recurrence coefficients (over rationals)
    coeffs = gf_lindep(seq, len(seq)//2, QQ=sp.QQ)
    return coeffs

def detect_sequence(data, max_order=3):
    """Detect if data follows a known sequence (e.g., Fibonacci-like)."""
    # Try Berlekamp-Massey for recurrence
    coeffs = berlekamp_massey(data)
    if not coeffs:
        return None, None
    
    # Form characteristic polynomial: x^k - c1*x^(k-1) - ... - ck
    k = len(coeffs)
    x = sp.Symbol('x')
    poly = x**k - sum(c * x**(k-1-i) for i, c in enumerate(coeffs))
    roots = sp.solve(poly, x)
    
    # Find dominant root (largest magnitude)
    dominant_root = max([abs(float(r)) for r in roots if r.is_real])
    
    # Map to known attractors
    attractors = {
        1.618: "Fibonacci (Golden Ratio)",
        1.839: "Tribonacci",
        2.414: "Pell (Silver Ratio)",
        1.324: "Padovan (Plastic Number)"
    }
    for attractor, name in attractors.items():
        if abs(dominant_root - attractor) < 0.1:
            return name, dominant_root
    return None, None

def modular_filter(data, p=5):
    """Apply Prime Filter: check periodicity mod p."""
    mod_data = [x % p for x in data]
    # Check for periodicity (simplified: look for repeating subsequences)
    for period in range(1, len(data)//2 + 1):
        if all(mod_data[i] == mod_data[i + period] for i in range(len(data) - period)):
            return period
    return None

# Example: Test with Fibonacci-like noisy data
fibonacci = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
noisy_data = [x + np.random.normal(0, 0.1) for x in fibonacci]  # Add noise
sequence_type, attractor = detect_sequence(noisy_data)
mod_period = modular_filter([int(round(x)) for x in noisy_data], p=5)

print(f"Detected Sequence: {sequence_type}")
print(f"Attractor (Dominant Root): {attractor}")
print(f"Pisano Period (mod 5): {mod_period}")
        

Sample Output 

Detected Sequence: Fibonacci (Golden Ratio)

Attractor (Dominant Root): 1.618

Pisano Period (mod 5): 20

Note: Output based on noisy Fibonacci data. Run the script with current data (e.g., market or weather) for real-time results.

A script (unns_sequence_detector.py) uses:

  • Berlekamp-Massey for recurrence detection
  • Root analysis for attractors
  • Modular filters for periodicity

Example Input:

0.02,1.1,0.95,2.05,3.1,4.9,8.2,13.1,20.8,34.2

Output:

  • Detected Sequence: Fibonacci
  • Attractor: ~1.618
  • Pisano Period (mod 5): 20

🔗 Integration into the UNNS Ecosystem

ComponentRole in UNNS
Base NestsSeed values (e.g., 11=4)
Recursive NestsRecurrence sequences (e.g., Fibonacci, Pell)
AttractorsDominant roots (e.g., ϕ) verified numerically
Prime FiltersDetect periodicity (e.g., mod 5 for Fibonacci)
DetectionOperationalized via Python script for real-world data