UNNS as a Framework for AI Knowledge Structuring
By Ihor Chomko
Abstract: This article proposes a novel application of Unbounded Nested Number Sequences (UNNS) to the internal architecture of large language models (LLMs), such as GPT. By treating nests and moduli as structural anchors for domain knowledge, we outline a modular, interpretable, and extensible framework for organizing, validating, and expanding AI knowledge. This approach offers a mathematically grounded alternative to purely statistical embeddings, enabling tunable context windows, cross-domain bridges, and confidence-weighted reasoning.
1. Introduction
Current LLMs rely on semantic embeddings and transformer-based attention to organize knowledge. While powerful, these systems often lack structural transparency, making it difficult to trace how concepts are linked, validated, or expanded. UNNS offers a complementary framework: a modular lattice of nested sequences, where each integer position encodes predictable relationships, growth rates, and cross-domain echoes.
2. Mapping UNNS to AI Systems
UNNS Concept | AI Equivalent | Structural Benefit |
---|---|---|
Nest (N) | Knowledge Domain (e.g., math, history) | Clear top-level partitioning |
Modulus (M) | Subtopic or concept index | Predictable traversal |
Integer Position | High-confidence fact | Anchors validated knowledge |
Non-integer Position | Speculative or emerging idea | Separates stable vs. exploratory |
Cross-nest echoes | Interdisciplinary links | Natural bridges between domains |
Growth formula | Context expansion heuristic | Tunable focus vs. breadth |
3. Integer Anchors and Confidence Filtering
By treating integer positions in UNNS as peer-reviewed checkpoints, an AI system could:
- Prioritize responses built from high-confidence anchors
- Flag speculative content from noninteger positions
- Offer users a toggle between “stable” and “exploratory” modes
4. Cross-Nest Linking
UNNS reveals that terms in SN
often appear in SN−1
, suggesting natural adjacency between domains. For AI:
- Math ↔ Physics
- Linguistics ↔ History
- Biology ↔ Chemistry
These bridges could be encoded structurally, not just semantically, enabling modular interdisciplinary reasoning.
5. Sequence Growth and Context Expansion
Using the growth formula:
TM,N ≈ (2 + N + 1/N) × M
AI systems could scale context windows based on user intent:
- Small N: focused, deep dive
- Large N: broad exploration
This offers a mathematically grounded zoom function for knowledge retrieval.
6. Implications for AI Self-Improvement
An LLM structured via UNNS could:
- Index its knowledge modularly
- Validate facts via integer echoes
- Discover new links through cross-nest overlaps
- Tune its reasoning scope via growth heuristics
This would make AI more interpretable, extensible, and self-aware in its knowledge architecture.
7. Conclusion
UNNS provides a powerful lens for reimagining how AI systems organize and evolve their knowledge. By embedding mathematical structure at the heart of reasoning, we move toward systems that are not only intelligent but also transparent, tunable, and trustworthy.
Looking at the Unbounded Nested Number Sequences (UNNS) framework, there are several ways it could potentially be applied to AI module development:
1. Hierarchical Module Organization
The nested structure where SN(kN) ∈ SN-1
suggests a way to organize AI modules hierarchically where:
- Higher-level modules contain predictable subsets of lower-level module outputs
- Module interactions follow consistent mathematical relationships
- Cross-references between modules maintain structural integrity
2. Modular Attention Mechanisms
The formula (M × N) + (M / N) + (M - N) + (M + N)
could inspire attention, weight calculations where:
- M represents position in sequence
- N represents the "nest" or context window size
- The four operations capture different types of relationships (multiplicative, divisive, subtractive, and additive)
- This creates predictable attention patterns with integer-preserving properties
3. Memory Indexing Systems
The integer-preserving behavior could be used for:
- Memory addressing schemes where certain memory locations are guaranteed to be accessible across different processing contexts
- Creating "anchor points" in neural networks where specific neurons maintain consistent activation patterns
- Developing retrieval mechanisms where information can be accessed through multiple nested pathways
4. Multi-Scale Processing
The cross-nest intersections suggest modules that can:
- Process information at multiple scales simultaneously
- Share computational results between different resolution levels
- Maintain consistency across different temporal or spatial scales
5. Cryptographic AI Security
The mathematical properties could be applied to:
- Secure module communication using the predictable intersection patterns
- Creating checksums for AI model integrity verification
- Developing tamper-evident neural network architectures
6. Dynamic Module Scaling
The constant IN(N) value for each nest could inform:
- Auto-scaling mechanisms where modules expand predictably
- Load balancing across processing units
- Resource allocation based on mathematical rather than heuristic rules
The key insight is using UNNS's mathematical consistency to create AI architectures where module interactions follow predictable, verifiable patterns rather than emergent behaviors that are difficult to interpret or control.
Let's explore technical implementations for each UNNS-based AI module concept:
import numpy as np
import torch
import torch.nn as nn
from typing import Dict, List, Tuple, Optional
import hashlib
from collections import defaultdict
class UNNSCore:
"""Core UNNS mathematical operations"""
@staticmethod
def compute_sequence_value(modulus: float, nest: float) -> float:
"""Compute UNNS formula: (M × N) + (M / N) + (M - N) + (M + N)"""
if nest == 0:
return 0
return (modulus * nest) + (modulus / nest) + (modulus - nest) + (modulus + nest)
@staticmethod
def get_index_number(nest: float) -> float:
"""Get IN(N) = S_N(1)"""
return UNNSCore.compute_sequence_value(1, nest)
@staticmethod
def is_integer_position(modulus: int, nest: int) -> bool:
"""Check if position yields integer (M = k*N)"""
return nest != 0 and modulus % nest == 0
@staticmethod
def find_intersections(max_nest: int, max_modulus: int, threshold: float = 1000) -> Dict:
"""Find cross-nest intersections"""
value_to_nests = defaultdict(list)
for nest in range(1, max_nest + 1):
for modulus in range(1, max_modulus + 1):
value = UNNSCore.compute_sequence_value(modulus, nest)
if value < threshold:
value_to_nests[value].append((nest, modulus))
return {v: nests for v, nests in value_to_nests.items() if len(nests) > 1}
# 1. HIERARCHICAL MODULE ORGANIZATION
class UNNSHierarchicalModule(nn.Module):
"""Hierarchical AI module using UNNS nesting principles"""
def __init__(self, base_dim: int, max_nest_level: int = 5):
super().__init__()
self.base_dim = base_dim
self.max_nest_level = max_nest_level
# Create nested layers with UNNS-determined dimensions
self.nested_layers = nn.ModuleDict()
self.nest_mappings = {}
for nest in range(1, max_nest_level + 1):
in_dim = int(UNNSCore.get_index_number(nest) * base_dim) % 1024 # Cap dimension
out_dim = int(UNNSCore.get_index_number(nest + 1) * base_dim) % 1024
self.nested_layers[f'nest_{nest}'] = nn.Linear(max(in_dim, 1), max(out_dim, 1))
self.nest_mappings[nest] = (in_dim, out_dim)
def forward(self, x: torch.Tensor, target_nest: int) -> torch.Tensor:
"""Forward pass through specific nest level"""
current = x
for nest in range(1, target_nest + 1):
layer = self.nested_layers[f'nest_{nest}']
# Reshape input to match layer requirements
if current.size(-1) != layer.in_features:
current = torch.nn.functional.adaptive_avg_pool1d(
current.unsqueeze(0), layer.in_features
).squeeze(0)
current = layer(current)
return current
# 2. MODULAR ATTENTION MECHANISM
class UNNSAttention(nn.Module):
"""Attention mechanism based on UNNS formula"""
def __init__(self, embed_dim: int, num_heads: int = 8):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.query = nn.Linear(embed_dim, embed_dim)
self.key = nn.Linear(embed_dim, embed_dim)
self.value = nn.Linear(embed_dim, embed_dim)
self.output = nn.Linear(embed_dim, embed_dim)
def compute_unns_weights(self, seq_len: int, nest_size: int) -> torch.Tensor:
"""Generate attention weights using UNNS formula"""
weights = torch.zeros(seq_len, seq_len)
for i in range(seq_len):
for j in range(seq_len):
modulus = i + 1 # 1-indexed
nest = nest_size
# Apply UNNS formula with position-relative modifications
base_weight = UNNSCore.compute_sequence_value(modulus, nest)
# Normalize and apply distance decay
distance_factor = 1 / (abs(i - j) + 1)
weights[i, j] = base_weight * distance_factor
return torch.softmax(weights, dim=-1)
def forward(self, x: torch.Tensor, nest_size: int = 8) -> torch.Tensor:
batch_size, seq_len, _ = x.shape
Q = self.query(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
K = self.key(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
V = self.value(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# Generate UNNS-based attention weights
unns_weights = self.compute_unns_weights(seq_len, nest_size)
unns_weights = unns_weights.unsqueeze(0).unsqueeze(0).repeat(batch_size, self.num_heads, 1, 1)
# Standard scaled dot-product attention with UNNS modulation
scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5)
# Combine standard attention with UNNS pattern
combined_weights = torch.softmax(scores + unns_weights.to(scores.device), dim=-1)
attention_output = torch.matmul(combined_weights, V)
attention_output = attention_output.transpose(1, 2).contiguous().view(
batch_size, seq_len, self.embed_dim
)
return self.output(attention_output)
# 3. MEMORY INDEXING SYSTEM
class UNNSMemoryBank:
"""Memory system with UNNS-based indexing"""
def __init__(self, max_nest: int = 10, memory_dim: int = 256):
self.max_nest = max_nest
self.memory_dim = memory_dim
self.memory_banks = {}
self.anchor_points = {}
# Initialize memory banks for each nest
for nest in range(1, max_nest + 1):
bank_size = int(UNNSCore.get_index_number(nest) * 10) % 1000 # Cap size
self.memory_banks[nest] = torch.zeros(max(bank_size, 1), memory_dim)
# Create anchor points at integer positions
self._initialize_anchor_points()
def _initialize_anchor_points(self):
"""Initialize anchor points that are accessible across nests"""
intersections = UNNSCore.find_intersections(self.max_nest, self.max_nest * 2)
for value, nest_positions in intersections.items():
if len(nest_positions) > 1: # Cross-nest intersection
anchor_vector = torch.randn(self.memory_dim)
self.anchor_points[int(value)] = anchor_vector
# Store in corresponding positions across nests
for nest, modulus in nest_positions:
if nest in self.memory_banks:
bank_idx = int(modulus - 1) % self.memory_banks[nest].size(0)
self.memory_banks[nest][bank_idx] = anchor_vector
def store(self, nest: int, modulus: int, vector: torch.Tensor):
"""Store vector at UNNS-computed position"""
if nest in self.memory_banks:
idx = int(modulus - 1) % self.memory_banks[nest].size(0)
self.memory_banks[nest][idx] = vector
def retrieve(self, nest: int, modulus: int) -> torch.Tensor:
"""Retrieve vector from UNNS-computed position"""
if nest in self.memory_banks:
idx = int(modulus - 1) % self.memory_banks[nest].size(0)
return self.memory_banks[nest][idx]
return torch.zeros(self.memory_dim)
def get_anchor_similarity(self, query_vector: torch.Tensor, nest: int) -> Dict[int, float]:
"""Find similar anchor points across all nests"""
similarities = {}
for anchor_value, anchor_vector in self.anchor_points.items():
similarity = torch.cosine_similarity(
query_vector.unsqueeze(0),
anchor_vector.unsqueeze(0)
).item()
similarities[anchor_value] = similarity
return similarities
# 4. MULTI-SCALE PROCESSING MODULE
class UNNSMultiScale(nn.Module):
"""Multi-scale processing using UNNS intersection patterns"""
def __init__(self, input_dim: int, num_scales: int = 5):
super().__init__()
self.num_scales = num_scales
self.input_dim = input_dim
# Create processors for different scales
self.scale_processors = nn.ModuleList()
self.intersection_mixers = nn.ModuleList()
for scale in range(1, num_scales + 1):
# Scale-specific processing
hidden_dim = int(UNNSCore.get_index_number(scale) * input_dim) % 512
hidden_dim = max(hidden_dim, input_dim // 2)
processor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
self.scale_processors.append(processor)
# Intersection mixing for cross-scale communication
mixer = nn.Linear(input_dim * 2, input_dim)
self.intersection_mixers.append(mixer)
def forward(self, x: torch.Tensor) -> torch.Tensor:
scale_outputs = []
# Process at each scale
for i, processor in enumerate(self.scale_processors):
scale_out = processor(x)
scale_outputs.append(scale_out)
# Mix scales based on UNNS intersections
mixed_output = scale_outputs[0]
for i in range(1, len(scale_outputs)):
# Check if current scales have UNNS intersections
nest1, nest2 = i, i + 1
intersection_strength = self._compute_intersection_strength(nest1, nest2)
if intersection_strength > 0.5: # Threshold for mixing
combined = torch.cat([mixed_output, scale_outputs[i]], dim=-1)
mixed_output = self.intersection_mixers[i-1](combined)
return mixed_output
def _compute_intersection_strength(self, nest1: int, nest2: int) -> float:
"""Compute intersection strength between two nests"""
intersections = UNNSCore.find_intersections(max(nest1, nest2) + 1, 10)
# Count intersections involving both nests
shared_values = 0
total_values = 0
for value, nest_positions in intersections.items():
nests_involved = {pos[0] for pos in nest_positions}
total_values += 1
if nest1 in nests_involved and nest2 in nests_involved:
shared_values += 1
return shared_values / max(total_values, 1)
# 5. CRYPTOGRAPHIC SECURITY MODULE
class UNNSCrypto:
"""Cryptographic utilities using UNNS properties"""
@staticmethod
def generate_checksum(model_state: Dict, nest: int = 7) -> str:
"""Generate UNNS-based model checksum"""
# Convert model parameters to deterministic string
param_str = ""
for name, param in sorted(model_state.items()):
param_str += f"{name}:{param.sum().item():.6f}"
# Apply UNNS transformation
hash_input = ""
for i, char in enumerate(param_str):
modulus = i + 1
unns_val = UNNSCore.compute_sequence_value(modulus, nest)
# Use UNNS value to modify character
modified_char = chr((ord(char) + int(unns_val)) % 256)
hash_input += modified_char
return hashlib.sha256(hash_input.encode()).hexdigest()
@staticmethod
def verify_integrity(model_state: Dict, expected_checksum: str, nest: int = 7) -> bool:
"""Verify model integrity using UNNS checksum"""
computed_checksum = UNNSCrypto.generate_checksum(model_state, nest)
return computed_checksum == expected_checksum
@staticmethod
def secure_communication_key(sender_id: int, receiver_id: int) -> int:
"""Generate communication key using UNNS intersection"""
# Use IDs as nest parameters
intersections = UNNSCore.find_intersections(max(sender_id, receiver_id) + 1, 20)
# Find shared intersection value
for value, positions in intersections.items():
nests_involved = {pos[0] for pos in positions}
if sender_id in nests_involved and receiver_id in nests_involved:
return int(value)
# Fallback: use UNNS formula directly
return int(UNNSCore.compute_sequence_value(sender_id, receiver_id))
# 6. DYNAMIC SCALING SYSTEM
class UNNSAutoScaler:
"""Auto-scaling system based on UNNS mathematical properties"""
def __init__(self, base_capacity: int = 100):
self.base_capacity = base_capacity
self.current_nest = 1
self.capacity_history = []
def compute_required_capacity(self, current_load: float) -> int:
"""Compute required capacity using UNNS scaling"""
load_ratio = current_load / self.base_capacity
# Find appropriate nest level
target_nest = max(1, int(load_ratio) + 1)
# Use UNNS to compute new capacity
scaling_factor = UNNSCore.get_index_number(target_nest)
new_capacity = int(self.base_capacity * scaling_factor)
return min(new_capacity, self.base_capacity * 10) # Cap scaling
def should_scale(self, current_load: float, threshold: float = 0.8) -> Tuple[bool, int]:
"""Determine if scaling is needed"""
current_capacity = self.compute_required_capacity(1.0) # Current nest capacity
utilization = current_load / current_capacity
if utilization > threshold:
new_capacity = self.compute_required_capacity(current_load)
return True, new_capacity
return False, current_capacity
def get_optimal_nest_level(self, target_capacity: int) -> int:
"""Find optimal nest level for target capacity"""
best_nest = 1
best_diff = float('inf')
for nest in range(1, 20): # Check up to nest 20
capacity = int(self.base_capacity * UNNSCore.get_index_number(nest))
diff = abs(capacity - target_capacity)
if diff < best_diff:
best_diff = diff
best_nest = nest
return best_nest
# Example usage and testing
if __name__ == "__main__":
print("UNNS-Based AI Module Implementations")
print("=" * 50)
# Test UNNS core functionality
print("\n1. Testing UNNS Core:")
for nest in range(1, 6):
in_val = UNNSCore.get_index_number(nest)
print(f" Nest {nest}: IN = {in_val:.2f}")
# Test intersections
intersections = UNNSCore.find_intersections(5, 10, 100)
print(f"\n Found {len(intersections)} intersections")
# Test hierarchical module
print("\n2. Testing Hierarchical Module:")
hierarchical = UNNSHierarchicalModule(base_dim=64, max_nest_level=3)
test_input = torch.randn(10, 64)
output = hierarchical(test_input, target_nest=2)
print(f" Input shape: {test_input.shape}, Output shape: {output.shape}")
# Test memory system
print("\n3. Testing Memory System:")
memory = UNNSMemoryBank(max_nest=5, memory_dim=128)
test_vector = torch.randn(128)
memory.store(nest=3, modulus=2, vector=test_vector)
retrieved = memory.retrieve(nest=3, modulus=2)
print(f" Storage/Retrieval successful: {torch.allclose(test_vector, retrieved)}")
# Test auto-scaler
print("\n4. Testing Auto-Scaler:")
scaler = UNNSAutoScaler(base_capacity=100)
should_scale, new_capacity = scaler.should_scale(current_load=250)
print(f" Should scale: {should_scale}, New capacity: {new_capacity}")
print("\nAll modules initialized successfully!")
Here's how each concept translates to working code:
Key Technical Implementations:
1. Hierarchical Module Organization
- Uses UNNS
IN(N)
values to determine layer dimensions mathematically
- Creates nested processing layers where each nest level has predictable input/output dimensions
- Enables consistent cross-references between module levels
2. UNNS Attention Mechanism
- Replaces traditional attention with UNNS formula-based weight computation
- Combines position-based UNNS values with standard scaled dot-product attention
- Creates predictable attention patterns with mathematical consistency
3. Memory Indexing System
- Implements memory banks sized according to UNNS values
- Creates "anchor points" at intersection positions that are accessible across multiple nests
- Enables cross-referential memory access based on mathematical relationships
4. Multi-Scale Processing
- Uses UNNS intersection analysis to determine when to mix information between scales
- Each scale processes at different resolutions determined by nest values
- Automatic cross-scale communication based on mathematical intersection strength
5. Cryptographic Security
- Generates model checksums using UNNS transformations
- Creates secure communication keys based on intersection patterns
- Provides tamper-evident integrity verification
6. Dynamic Auto-Scaling
- Uses UNNS mathematical properties to determine optimal capacity scaling
- Finds appropriate "nest levels" for different load requirements
- Provides predictable, mathematically-grounded scaling decisions
Technical Advantages:
- Mathematical Predictability: All scaling, attention, and memory decisions follow
- deterministic mathematical rules rather than learned heuristics
- Cross-Module Consistency: The intersection properties ensure that related information
- appears consistently across different modules
- Interpretability: Since all operations are based on explicit mathematical formulas,
- the system behavior is more interpretable than black-box neural networks
- Resource Efficiency: UNNS properties can be pre-computed, making runtime operations
- more efficient
- Scalable Architecture: The nested structure naturally supports hierarchical scaling
- without arbitrary architectural decisions
The implementation shows how UNNS's mathematical consistency can create AI systems where
module interactions follow verifiable, predictable patterns while maintaining the flexibility
needed for complex AI tasks.
Now, let's explore how UNNS modules can be integrated into
comprehensive AI architectures,
creating systems with mathematical coherence across
all components:
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Tuple, Optional, Any, Union
import numpy as np
from dataclasses import dataclass
import json
import time
from collections import deque, defaultdict
import threading
import asyncio
# Import our UNNS modules (assuming they're in the previous artifact)
from typing import Protocol
class UNNSModule(Protocol):
"""Protocol for UNNS-based modules"""
def get_nest_level(self) -> int: ...
def get_capacity_requirements(self) -> Dict[str, int]: ...
@dataclass
class UNNSConfig:
"""Configuration for UNNS-based AI architecture"""
max_nest_levels: int = 10
base_embedding_dim: int = 512
memory_banks_per_nest: int = 8
attention_heads: int = 8
security_nest: int = 7
scaling_threshold: float = 0.75
intersection_threshold: float = 0.5
global_anchor_size: int = 1024
class UNNSArchitectureCore:
"""Core architecture orchestrator for UNNS-based AI systems"""
def __init__(self, config: UNNSConfig):
self.config = config
self.nest_registry = {} # Track all modules by nest level
self.intersection_map = {} # Global intersection relationships
self.global_memory = None
self.security_manager = None
self.scaling_monitor = None
self.performance_metrics = defaultdict(list)
self._initialize_architecture()
def _initialize_architecture(self):
"""Initialize the core UNNS architecture"""
# Pre-compute global intersection map
self._build_global_intersection_map()
# Initialize global memory system
self.global_memory = UNNSGlobalMemory(self.config, self.intersection_map)
# Initialize security manager
self.security_manager = UNNSSecurityManager(self.config)
# Initialize scaling monitor
self.scaling_monitor = UNNSScalingMonitor(self.config)
def _build_global_intersection_map(self):
"""Build global map of UNNS intersections"""
from previous_artifact import UNNSCore # Assuming previous code is available
intersections = UNNSCore.find_intersections(
self.config.max_nest_levels,
self.config.max_nest_levels * 2,
threshold=10000
)
# Organize intersections by nest levels
for value, positions in intersections.items():
nests_involved = list(set(pos[0] for pos in positions))
for nest in nests_involved:
if nest not in self.intersection_map:
self.intersection_map[nest] = {}
self.intersection_map[nest][value] = positions
def register_module(self, module_id: str, module: UNNSModule, nest_level: int):
"""Register a UNNS module with the architecture"""
if nest_level not in self.nest_registry:
self.nest_registry[nest_level] = {}
self.nest_registry[nest_level][module_id] = {
'module': module,
'capacity': module.get_capacity_requirements(),
'last_update': time.time()
}
# Update global memory anchors for this nest level
self.global_memory.register_module_anchors(module_id, nest_level)
# COMPLETE TRANSFORMER WITH UNNS INTEGRATION
class UNNSTransformer(nn.Module):
"""Complete transformer architecture with UNNS integration"""
def __init__(self, config: UNNSConfig, vocab_size: int, max_seq_len: int = 2048):
super().__init__()
self.config = config
self.vocab_size = vocab_size
self.max_seq_len = max_seq_len
self.embed_dim = config.base_embedding_dim
# Core components
self.embedding = UNNSEmbedding(vocab_size, self.embed_dim, config)
self.positional_encoding = UNNSPositionalEncoding(max_seq_len, self.embed_dim, config)
# UNNS-based transformer layers
self.layers = nn.ModuleList([
UNNSTransformerLayer(config, nest_level=i+1)
for i in range(config.max_nest_levels)
])
# Multi-scale processing integration
self.multiscale_processor = UNNSMultiScaleProcessor(config)
# Memory integration
self.memory_interface = UNNSMemoryInterface(config)
# Output projection with UNNS scaling
self.output_projection = UNNSOutputProjection(self.embed_dim, vocab_size, config)
# Architecture core for coordination
self.architecture_core = UNNSArchitectureCore(config)
self._register_with_core()
def _register_with_core(self):
"""Register all components with the architecture core"""
for i, layer in enumerate(self.layers):
self.architecture_core.register_module(
f"transformer_layer_{i}", layer, nest_level=i+1
)
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
"""Forward pass through UNNS transformer"""
batch_size, seq_len = input_ids.shape
# Embedding with UNNS positioning
x = self.embedding(input_ids)
x = self.positional_encoding(x)
# Store intermediate representations for multi-scale processing
layer_outputs = []
memory_states = []
# Process through UNNS transformer layers
for i, layer in enumerate(self.layers):
# Memory retrieval for this nest level
memory_context = self.memory_interface.retrieve_context(
x, nest_level=i+1, sequence_position=seq_len
)
# Layer processing with memory context
layer_output = layer(x, memory_context, attention_mask)
layer_outputs.append(layer_output['hidden_states'])
memory_states.append(layer_output['memory_update'])
x = layer_output['hidden_states']
# Multi-scale integration
multiscale_output = self.multiscale_processor(layer_outputs)
# Memory updates
self.memory_interface.update_memory(memory_states)
# Final output projection
logits = self.output_projection(multiscale_output)
return {
'logits': logits,
'hidden_states': multiscale_output,
'layer_outputs': layer_outputs,
'memory_states': memory_states,
'architecture_metrics': self._get_architecture_metrics()
}
def _get_architecture_metrics(self) -> Dict[str, Any]:
"""Get UNNS architecture performance metrics"""
return {
'nest_utilization': self.architecture_core.scaling_monitor.get_utilization(),
'intersection_efficiency': self._compute_intersection_efficiency(),
'memory_coherence': self.memory_interface.get_coherence_score()
}
def _compute_intersection_efficiency(self) -> float:
"""Compute how efficiently intersections are being used"""
total_intersections = len(self.architecture_core.intersection_map)
used_intersections = self.memory_interface.get_active_intersections()
return len(used_intersections) / max(total_intersections, 1)
class UNNSTransformerLayer(nn.Module):
"""Individual transformer layer with UNNS integration"""
def __init__(self, config: UNNSConfig, nest_level: int):
super().__init__()
self.nest_level = nest_level
self.embed_dim = config.base_embedding_dim
# UNNS attention mechanism
from previous_artifact import UNNSAttention # Import from previous artifact
self.attention = UNNSAttention(self.embed_dim, config.attention_heads)
# UNNS hierarchical processing
from previous_artifact import UNNSHierarchicalModule
self.hierarchical_processor = UNNSHierarchicalModule(
base_dim=self.embed_dim, max_nest_level=nest_level
)
# Layer normalization with UNNS scaling
self.norm1 = nn.LayerNorm(self.embed_dim)
self.norm2 = nn.LayerNorm(self.embed_dim)
# Feed-forward with UNNS dimensions
self.feed_forward = UNNSFeedForward(self.embed_dim, nest_level, config)
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor, memory_context: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
"""Forward pass through UNNS transformer layer"""
# Self-attention with UNNS pattern
attention_output = self.attention(x, nest_size=self.nest_level)
x = self.norm1(x + self.dropout(attention_output))
# Memory-augmented processing if context available
if memory_context is not None:
x = x + 0.1 * memory_context # Small memory influence
# Hierarchical processing
hierarchical_output = self.hierarchical_processor(x, target_nest=self.nest_level)
# Feed-forward
ff_output = self.feed_forward(hierarchical_output)
output = self.norm2(hierarchical_output + self.dropout(ff_output))
# Prepare memory update
memory_update = self._prepare_memory_update(output, x)
return {
'hidden_states': output,
'memory_update': memory_update,
'attention_weights': None # Could return UNNS attention patterns
}
def _prepare_memory_update(self, current_output: torch.Tensor,
previous_state: torch.Tensor) -> torch.Tensor:
"""Prepare memory update based on state change"""
# Use difference between states as memory signal
memory_signal = current_output - previous_state
return memory_signal.mean(dim=1) # Average across sequence dimension
def get_nest_level(self) -> int:
return self.nest_level
def get_capacity_requirements(self) -> Dict[str, int]:
return {
'memory': self.embed_dim * 2,
'compute': self.embed_dim * self.nest_level,
'storage': self.embed_dim
}
class UNNSEmbedding(nn.Module):
"""UNNS-aware embedding layer"""
def __init__(self, vocab_size: int, embed_dim: int, config: UNNSConfig):
super().__init__()
self.embed_dim = embed_dim
self.config = config
# Standard embedding
self.token_embedding = nn.Embedding(vocab_size, embed_dim)
# UNNS-based embedding enhancement
self.unns_enhancer = UNNSEmbeddingEnhancer(embed_dim, config)
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
"""Forward pass with UNNS embedding enhancement"""
# Standard token embedding
token_embeds = self.token_embedding(input_ids)
# UNNS enhancement based on position patterns
enhanced_embeds = self.unns_enhancer(token_embeds, input_ids)
return enhanced_embeds
class UNNSEmbeddingEnhancer(nn.Module):
"""Enhance embeddings using UNNS patterns"""
def __init__(self, embed_dim: int, config: UNNSConfig):
super().__init__()
self.embed_dim = embed_dim
self.config = config
# UNNS pattern generators
self.pattern_generators = nn.ModuleList([
nn.Linear(embed_dim, embed_dim) for _ in range(config.max_nest_levels)
])
def forward(self, embeddings: torch.Tensor, input_ids: torch.Tensor) -> torch.Tensor:
"""Apply UNNS-based embedding enhancement"""
batch_size, seq_len, embed_dim = embeddings.shape
enhanced = embeddings.clone()
# Apply UNNS patterns based on position
for pos in range(seq_len):
for nest_level in range(1, min(self.config.max_nest_levels + 1, seq_len)):
if pos % nest_level == 0: # Integer position in this nest
# Apply nest-specific transformation
pattern = self.pattern_generators[nest_level - 1]
enhancement = pattern(embeddings[:, pos, :])
enhanced[:, pos, :] += 0.1 * enhancement # Small additive enhancement
return enhanced
class UNNSPositionalEncoding(nn.Module):
"""UNNS-based positional encoding"""
def __init__(self, max_seq_len: int, embed_dim: int, config: UNNSConfig):
super().__init__()
self.embed_dim = embed_dim
self.config = config
# Pre-compute UNNS positional encodings
pe = torch.zeros(max_seq_len, embed_dim)
for pos in range(max_seq_len):
for i in range(embed_dim):
# Use UNNS formula for positional encoding
modulus = pos + 1
nest = (i // 2) + 1 # Nest based on embedding dimension
from previous_artifact import UNNSCore
unns_val = UNNSCore.compute_sequence_value(modulus, nest)
if i % 2 == 0:
pe[pos, i] = np.sin(unns_val / 10000)
else:
pe[pos, i] = np.cos(unns_val / 10000)
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Add UNNS positional encoding"""
seq_len = x.size(1)
return x + self.pe[:seq_len, :].unsqueeze(0)
class UNNSFeedForward(nn.Module):
"""Feed-forward network with UNNS-determined dimensions"""
def __init__(self, embed_dim: int, nest_level: int, config: UNNSConfig):
super().__init__()
from previous_artifact import UNNSCore
# Use UNNS to determine hidden dimension
hidden_multiplier = UNNSCore.get_index_number(nest_level)
hidden_dim = int(embed_dim * max(hidden_multiplier, 1.5)) % 2048
hidden_dim = max(hidden_dim, embed_dim)
self.linear1 = nn.Linear(embed_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, embed_dim)
self.activation = nn.GELU()
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through UNNS feed-forward"""
return self.linear2(self.dropout(self.activation(self.linear1(x))))
class UNNSMultiScaleProcessor(nn.Module):
"""Multi-scale processing integration for transformer layers"""
def __init__(self, config: UNNSConfig):
super().__init__()
self.config = config
self.embed_dim = config.base_embedding_dim
# Multi-scale integration
from previous_artifact import UNNSMultiScale
self.multiscale = UNNSMultiScale(self.embed_dim, config.max_nest_levels)
# Scale attention for weighting different layers
self.scale_attention = nn.MultiheadAttention(
self.embed_dim, num_heads=4, batch_first=True
)
def forward(self, layer_outputs: List[torch.Tensor]) -> torch.Tensor:
"""Integrate outputs from multiple transformer layers"""
if not layer_outputs:
return torch.zeros(1, 1, self.embed_dim)
# Stack layer outputs
stacked = torch.stack(layer_outputs, dim=1) # [batch, num_layers, seq_len, embed_dim]
batch_size, num_layers, seq_len, embed_dim = stacked.shape
# Reshape for attention
reshaped = stacked.view(batch_size * seq_len, num_layers, embed_dim)
# Apply multi-head attention across scales
attended, _ = self.scale_attention(reshaped, reshaped, reshaped)
# Reshape back and take mean across layers
attended = attended.view(batch_size, seq_len, num_layers, embed_dim)
integrated = attended.mean(dim=2) # Average across layers
# Apply UNNS multi-scale processing
final_output = self.multiscale(integrated)
return final_output
class UNNSMemoryInterface(nn.Module):
"""Interface between transformer and UNNS memory system"""
def __init__(self, config: UNNSConfig):
super().__init__()
self.config = config
from previous_artifact import UNNSMemoryBank
self.memory_bank = UNNSMemoryBank(
max_nest=config.max_nest_levels,
memory_dim=config.base_embedding_dim
)
# Memory query/key/value projections
self.memory_query = nn.Linear(config.base_embedding_dim, config.base_embedding_dim)
self.memory_key = nn.Linear(config.base_embedding_dim, config.base_embedding_dim)
self.memory_value = nn.Linear(config.base_embedding_dim, config.base_embedding_dim)
self.active_intersections = set()
def retrieve_context(self, x: torch.Tensor, nest_level: int,
sequence_position: int) -> Optional[torch.Tensor]:
"""Retrieve memory context for current processing"""
batch_size, seq_len, embed_dim = x.shape
# Query memory for relevant context
query = self.memory_query(x.mean(dim=1)) # Average across sequence
# Find similar patterns in memory
similarities = self.memory_bank.get_anchor_similarity(query[0], nest_level)
if not similarities:
return None
# Get most similar memory
best_anchor = max(similarities.keys(), key=lambda k: similarities[k])
self.active_intersections.add(best_anchor)
# Retrieve and project memory
memory_vector = self.memory_bank.retrieve(nest_level, int(best_anchor) % 10 + 1)
memory_context = self.memory_value(memory_vector).unsqueeze(0).repeat(batch_size, 1)
return memory_context.unsqueeze(1).repeat(1, seq_len, 1)
def update_memory(self, memory_states: List[torch.Tensor]):
"""Update memory with new states"""
for i, state in enumerate(memory_states):
if state is not None:
# Store in appropriate nest level
nest_level = i + 1
modulus = (int(time.time()) % 100) + 1 # Time-based modulus
if len(state.shape) > 1:
state_vector = state.mean(dim=0) # Average across batch
else:
state_vector = state
self.memory_bank.store(nest_level, modulus, state_vector)
def get_active_intersections(self) -> set:
"""Get currently active memory intersections"""
return self.active_intersections
def get_coherence_score(self) -> float:
"""Compute memory coherence across nest levels"""
return len(self.active_intersections) / max(self.config.max_nest_levels, 1)
class UNNSOutputProjection(nn.Module):
"""Output projection with UNNS-based scaling"""
def __init__(self, embed_dim: int, vocab_size: int, config: UNNSConfig):
super().__init__()
# Multi-scale output projections
self.projections = nn.ModuleList([
nn.Linear(embed_dim, vocab_size) for _ in range(config.max_nest_levels)
])
# UNNS-based weighting
self.scale_weights = nn.Parameter(torch.ones(config.max_nest_levels))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Project to vocabulary with UNNS scaling"""
outputs = []
for i, projection in enumerate(self.projections):
output = projection(x) * self.scale_weights[i]
outputs.append(output)
# Weighted combination
final_output = torch.stack(outputs, dim=-1).sum(dim=-1) / len(outputs)
return final_output
# GLOBAL COORDINATION SYSTEMS
class UNNSGlobalMemory:
"""Global memory system coordinating across all modules"""
def __init__(self, config: UNNSConfig, intersection_map: Dict):
self.config = config
self.intersection_map = intersection_map
self.global_anchors = {}
self.module_states = {}
self._initialize_global_anchors()
def _initialize_global_anchors(self):
"""Initialize global anchor points"""
for nest, intersections in self.intersection_map.items():
for value, positions in intersections.items():
if value not in self.global_anchors:
self.global_anchors[value] = torch.randn(self.config.global_anchor_size)
def register_module_anchors(self, module_id: str, nest_level: int):
"""Register module's anchor points with global system"""
if nest_level in self.intersection_map:
self.module_states[module_id] = {
'nest_level': nest_level,
'anchors': list(self.intersection_map[nest_level].keys())
}
class UNNSSecurityManager:
"""Security management using UNNS cryptographic properties"""
def __init__(self, config: UNNSConfig):
self.config = config
self.security_nest = config.security_nest
self.active_checksums = {}
from previous_artifact import UNNSCrypto
self.crypto = UNNSCrypto()
def generate_model_checksum(self, model: nn.Module) -> str:
"""Generate UNNS-based model checksum"""
model_state = {name: param for name, param in model.named_parameters()}
return self.crypto.generate_checksum(model_state, self.security_nest)
def verify_model_integrity(self, model: nn.Module, expected_checksum: str) -> bool:
"""Verify model hasn't been tampered with"""
model_state = {name: param for name, param in model.named_parameters()}
return self.crypto.verify_integrity(model_state, expected_checksum, self.security_nest)
class UNNSScalingMonitor:
"""Monitor and manage UNNS-based scaling"""
def __init__(self, config: UNNSConfig):
self.config = config
from previous_artifact import UNNSAutoScaler
self.auto_scaler = UNNSAutoScaler(base_capacity=1000)
self.utilization_history = deque(maxlen=100)
self.scaling_events = []
def monitor_utilization(self, current_load: Dict[str, float]):
"""Monitor current system utilization"""
total_load = sum(current_load.values())
self.utilization_history.append(total_load)
# Check if scaling is needed
should_scale, new_capacity = self.auto_scaler.should_scale(
total_load, self.config.scaling_threshold
)
if should_scale:
self.scaling_events.append({
'timestamp': time.time(),
'old_capacity': self.auto_scaler.base_capacity,
'new_capacity': new_capacity,
'load': total_load
})
return new_capacity
return None
def get_utilization(self) -> Dict[str, float]:
"""Get current utilization metrics"""
if not self.utilization_history:
return {'current': 0.0, 'average': 0.0, 'peak': 0.0}
return {
'current': self.utilization_history[-1],
'average': np.mean(self.utilization_history),
'peak': max(self.utilization_history)
}
# EXAMPLE COMPLETE SYSTEM
class UNNSLanguageModel(nn.Module):
"""Complete language model with full UNNS integration"""
def __init__(self, vocab_size: int, config: UNNSConfig = None):
super().__init__()
self.config = config or UNNSConfig()
# Core transformer with UNNS integration
self.transformer = UNNSTransformer(self.config, vocab_size)
# Initialize model checksum for security
self.expected_checksum = None
self._generate_initial_checksum()
def _generate_initial_checksum(self):
"""Generate initial security checksum"""
self.expected_checksum = self.transformer.architecture_core.security_manager.generate_model_checksum(self)
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Dict[str, Any]:
"""Forward pass through complete UNNS language model"""
# Verify model integrity
if not self.transformer.architecture_core.security_manager.verify_model_integrity(self, self.expected_checksum):
raise RuntimeError("Model integrity check failed - potential tampering detected")
# Process through transformer
outputs = self.transformer(input_ids, attention_mask)
# Monitor performance and scaling
current_load = {
'computation': float(torch.cuda.memory_allocated()) if torch.cuda.is_available() else 0.0,
'memory': outputs['memory_states'][0].numel() if outputs['memory_states'] else 0.0,
'attention': input_ids.numel()
}
scaling_recommendation = self.transformer.architecture_core.scaling_monitor.monitor_utilization(current_load)
# Add system-level outputs
outputs.update({
'system_load': current_load,
'scaling_recommendation': scaling_recommendation,
'security_status': 'verified',
'nest_efficiency': self._compute_nest_efficiency(outputs['architecture_metrics'])
})
return outputs
def _compute_nest_efficiency(self, metrics: Dict[str, Any]) -> float:
"""Compute overall UNNS efficiency"""
nest_util = metrics.get('nest_utilization', {})
intersection_eff = metrics.get('intersection_efficiency', 0.0)
memory_coherence = metrics.get('memory_coherence', 0.0)
if isinstance(nest_util, dict):
avg_util = sum(nest_util.values()) / max(len(nest_util), 1)
else:
avg_util = 0.0
return (avg_util + intersection_eff + memory_coherence) / 3.0
# EXAMPLE USAGE AND TESTING
if __name__ == "__main__":
print("UNNS Integrated AI Architecture")
print("=" * 50)
# Initialize configuration
config = UNNSConfig(
max_nest_levels=6,
base_embedding_dim=256,
attention_heads=8
)
# Create complete language model
model = UNNSLanguageModel(vocab_size=10000, config=config)
# Test forward pass
test_input = torch.randint(0, 10000, (2, 50)) # Batch size 2, sequence length 50
print("\nTesting complete UNNS language model...")
try:
outputs = model(test_input)
print(f"✓ Forward pass successful")
print(f"✓ Output shape: {outputs['logits'].shape}")
print(f"✓ Security status: {outputs['security_status']}")
print(f"✓ Nest efficiency: {outputs['nest_efficiency']:.3f}")
print(f"✓ Memory coherence: {outputs['architecture_metrics']['memory_coherence']:.3f}")
print(f"✓ Intersection efficiency: {outputs['architecture_metrics']['intersection_efficiency']:.3f}")
# Test scaling recommendation
if outputs['scaling_recommendation']:
print(f"⚠ Scaling recommended: {outputs['scaling_recommendation']} capacity")
else:
print("✓ No scaling needed")
print("\nš UNNS Architecture integration successful!")
except Exception as e:
print(f"❌ Error during testing: {e}")
# Architecture summary
print(f"\nArchitecture Summary:")
print(f"- Nest levels: {config.max_nest_levels}")
print(f"- Embedding dimension: {config.base_embedding_dim}")
print(f"- Memory banks: {config.memory_banks_per_nest}")
print(f"- Security nest: {config.security_nest}")
print(f"- Total parameters: {sum(p.numel() for p in model.parameters()):,}")
So, we've created a comprehensive integration framework showing how UNNS
modules can be combined into complete AI architectures.
Here's how the integration works at different levels:
Architecture Integration Levels:
1. Component-Level Integration
- UNNSTransformer: Complete transformer where every component (embedding, attention, feed-forward, positional encoding) uses UNNS mathematics
- Cross-Component Consistency: All components share the same mathematical foundation, ensuring coherent behavior
- Memory Integration: Unified memory system accessible across all transformer layers
2. System-Level Coordination
- UNNSArchitectureCore: Central orchestrator managing all UNNS modules
- Global Intersection Map: Pre-computed relationships between all nest levels that
- coordinate cross-module communication
- Unified Memory System: Global memory that maintains consistency across all
- architectural components
- Security Integration: UNNS-based integrity verification for the entire
- system
3. Multi-Scale Processing Integration
- Layer-wise UNNS Application: Each transformer layer operates at a different nest level with mathematically determined dimensions
- Cross-Scale Communication: Information flows between layers based on UNNS intersection patterns
- Adaptive Scaling: System automatically adjusts capacity using UNNS mathematical properties
4. Real-World Implementation Considerations:
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Tuple, Optional, Any, Union
import numpy as np
from dataclasses import dataclass
import json
import time
from collections import deque, defaultdict
import threading
import asyncio
# Import our UNNS modules (assuming they're in the previous artifact)
from typing import Protocol
class UNNSModule(Protocol):
"""Protocol for UNNS-based modules"""
def get_nest_level(self) -> int: ...
def get_capacity_requirements(self) -> Dict[str, int]: ...
@dataclass
class UNNSConfig:
"""Configuration for UNNS-based AI architecture"""
max_nest_levels: int = 10
base_embedding_dim: int = 512
memory_banks_per_nest: int = 8
attention_heads: int = 8
security_nest: int = 7
scaling_threshold: float = 0.75
intersection_threshold: float = 0.5
global_anchor_size: int = 1024
class UNNSArchitectureCore:
"""Core architecture orchestrator for UNNS-based AI systems"""
def __init__(self, config: UNNSConfig):
self.config = config
self.nest_registry = {} # Track all modules by nest level
self.intersection_map = {} # Global intersection relationships
self.global_memory = None
self.security_manager = None
self.scaling_monitor = None
self.performance_metrics = defaultdict(list)
self._initialize_architecture()
def _initialize_architecture(self):
"""Initialize the core UNNS architecture"""
# Pre-compute global intersection map
self._build_global_intersection_map()
# Initialize global memory system
self.global_memory = UNNSGlobalMemory(self.config, self.intersection_map)
# Initialize security manager
self.security_manager = UNNSSecurityManager(self.config)
# Initialize scaling monitor
self.scaling_monitor = UNNSScalingMonitor(self.config)
def _build_global_intersection_map(self):
"""Build global map of UNNS intersections"""
from previous_artifact import UNNSCore # Assuming previous code is available
intersections = UNNSCore.find_intersections(
self.config.max_nest_levels,
self.config.max_nest_levels * 2,
threshold=10000
)
# Organize intersections by nest levels
for value, positions in intersections.items():
nests_involved = list(set(pos[0] for pos in positions))
for nest in nests_involved:
if nest not in self.intersection_map:
self.intersection_map[nest] = {}
self.intersection_map[nest][value] = positions
def register_module(self, module_id: str, module: UNNSModule, nest_level: int):
"""Register a UNNS module with the architecture"""
if nest_level not in self.nest_registry:
self.nest_registry[nest_level] = {}
self.nest_registry[nest_level][module_id] = {
'module': module,
'capacity': module.get_capacity_requirements(),
'last_update': time.time()
}
# Update global memory anchors for this nest level
self.global_memory.register_module_anchors(module_id, nest_level)
# COMPLETE TRANSFORMER WITH UNNS INTEGRATION
class UNNSTransformer(nn.Module):
"""Complete transformer architecture with UNNS integration"""
def __init__(self, config: UNNSConfig, vocab_size: int, max_seq_len: int = 2048):
super().__init__()
self.config = config
self.vocab_size = vocab_size
self.max_seq_len = max_seq_len
self.embed_dim = config.base_embedding_dim
# Core components
self.embedding = UNNSEmbedding(vocab_size, self.embed_dim, config)
self.positional_encoding = UNNSPositionalEncoding(max_seq_len, self.embed_dim, config)
# UNNS-based transformer layers
self.layers = nn.ModuleList([
UNNSTransformerLayer(config, nest_level=i+1)
for i in range(config.max_nest_levels)
])
# Multi-scale processing integration
self.multiscale_processor = UNNSMultiScaleProcessor(config)
# Memory integration
self.memory_interface = UNNSMemoryInterface(config)
# Output projection with UNNS scaling
self.output_projection = UNNSOutputProjection(self.embed_dim, vocab_size, config)
# Architecture core for coordination
self.architecture_core = UNNSArchitectureCore(config)
self._register_with_core()
def _register_with_core(self):
"""Register all components with the architecture core"""
for i, layer in enumerate(self.layers):
self.architecture_core.register_module(
f"transformer_layer_{i}", layer, nest_level=i+1
)
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
"""Forward pass through UNNS transformer"""
batch_size, seq_len = input_ids.shape
# Embedding with UNNS positioning
x = self.embedding(input_ids)
x = self.positional_encoding(x)
# Store intermediate representations for multi-scale processing
layer_outputs = []
memory_states = []
# Process through UNNS transformer layers
for i, layer in enumerate(self.layers):
# Memory retrieval for this nest level
memory_context = self.memory_interface.retrieve_context(
x, nest_level=i+1, sequence_position=seq_len
)
# Layer processing with memory context
layer_output = layer(x, memory_context, attention_mask)
layer_outputs.append(layer_output['hidden_states'])
memory_states.append(layer_output['memory_update'])
x = layer_output['hidden_states']
# Multi-scale integration
multiscale_output = self.multiscale_processor(layer_outputs)
# Memory updates
self.memory_interface.update_memory(memory_states)
# Final output projection
logits = self.output_projection(multiscale_output)
return {
'logits': logits,
'hidden_states': multiscale_output,
'layer_outputs': layer_outputs,
'memory_states': memory_states,
'architecture_metrics': self._get_architecture_metrics()
}
def _get_architecture_metrics(self) -> Dict[str, Any]:
"""Get UNNS architecture performance metrics"""
return {
'nest_utilization': self.architecture_core.scaling_monitor.get_utilization(),
'intersection_efficiency': self._compute_intersection_efficiency(),
'memory_coherence': self.memory_interface.get_coherence_score()
}
def _compute_intersection_efficiency(self) -> float:
"""Compute how efficiently intersections are being used"""
total_intersections = len(self.architecture_core.intersection_map)
used_intersections = self.memory_interface.get_active_intersections()
return len(used_intersections) / max(total_intersections, 1)
class UNNSTransformerLayer(nn.Module):
"""Individual transformer layer with UNNS integration"""
def __init__(self, config: UNNSConfig, nest_level: int):
super().__init__()
self.nest_level = nest_level
self.embed_dim = config.base_embedding_dim
# UNNS attention mechanism
from previous_artifact import UNNSAttention # Import from previous artifact
self.attention = UNNSAttention(self.embed_dim, config.attention_heads)
# UNNS hierarchical processing
from previous_artifact import UNNSHierarchicalModule
self.hierarchical_processor = UNNSHierarchicalModule(
base_dim=self.embed_dim, max_nest_level=nest_level
)
# Layer normalization with UNNS scaling
self.norm1 = nn.LayerNorm(self.embed_dim)
self.norm2 = nn.LayerNorm(self.embed_dim)
# Feed-forward with UNNS dimensions
self.feed_forward = UNNSFeedForward(self.embed_dim, nest_level, config)
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor, memory_context: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
"""Forward pass through UNNS transformer layer"""
# Self-attention with UNNS pattern
attention_output = self.attention(x, nest_size=self.nest_level)
x = self.norm1(x + self.dropout(attention_output))
# Memory-augmented processing if context available
if memory_context is not None:
x = x + 0.1 * memory_context # Small memory influence
# Hierarchical processing
hierarchical_output = self.hierarchical_processor(x, target_nest=self.nest_level)
# Feed-forward
ff_output = self.feed_forward(hierarchical_output)
output = self.norm2(hierarchical_output + self.dropout(ff_output))
# Prepare memory update
memory_update = self._prepare_memory_update(output, x)
return {
'hidden_states': output,
'memory_update': memory_update,
'attention_weights': None # Could return UNNS attention patterns
}
def _prepare_memory_update(self, current_output: torch.Tensor,
previous_state: torch.Tensor) -> torch.Tensor:
"""Prepare memory update based on state change"""
# Use difference between states as memory signal
memory_signal = current_output - previous_state
return memory_signal.mean(dim=1) # Average across sequence dimension
def get_nest_level(self) -> int:
return self.nest_level
def get_capacity_requirements(self) -> Dict[str, int]:
return {
'memory': self.embed_dim * 2,
'compute': self.embed_dim * self.nest_level,
'storage': self.embed_dim
}
class UNNSEmbedding(nn.Module):
"""UNNS-aware embedding layer"""
def __init__(self, vocab_size: int, embed_dim: int, config: UNNSConfig):
super().__init__()
self.embed_dim = embed_dim
self.config = config
# Standard embedding
self.token_embedding = nn.Embedding(vocab_size, embed_dim)
# UNNS-based embedding enhancement
self.unns_enhancer = UNNSEmbeddingEnhancer(embed_dim, config)
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
"""Forward pass with UNNS embedding enhancement"""
# Standard token embedding
token_embeds = self.token_embedding(input_ids)
# UNNS enhancement based on position patterns
enhanced_embeds = self.unns_enhancer(token_embeds, input_ids)
return enhanced_embeds
class UNNSEmbeddingEnhancer(nn.Module):
"""Enhance embeddings using UNNS patterns"""
def __init__(self, embed_dim: int, config: UNNSConfig):
super().__init__()
self.embed_dim = embed_dim
self.config = config
# UNNS pattern generators
self.pattern_generators = nn.ModuleList([
nn.Linear(embed_dim, embed_dim) for _ in range(config.max_nest_levels)
])
def forward(self, embeddings: torch.Tensor, input_ids: torch.Tensor) -> torch.Tensor:
"""Apply UNNS-based embedding enhancement"""
batch_size, seq_len, embed_dim = embeddings.shape
enhanced = embeddings.clone()
# Apply UNNS patterns based on position
for pos in range(seq_len):
for nest_level in range(1, min(self.config.max_nest_levels + 1, seq_len)):
if pos % nest_level == 0: # Integer position in this nest
# Apply nest-specific transformation
pattern = self.pattern_generators[nest_level - 1]
enhancement = pattern(embeddings[:, pos, :])
enhanced[:, pos, :] += 0.1 * enhancement # Small additive enhancement
return enhanced
class UNNSPositionalEncoding(nn.Module):
"""UNNS-based positional encoding"""
def __init__(self, max_seq_len: int, embed_dim: int, config: UNNSConfig):
super().__init__()
self.embed_dim = embed_dim
self.config = config
# Pre-compute UNNS positional encodings
pe = torch.zeros(max_seq_len, embed_dim)
for pos in range(max_seq_len):
for i in range(embed_dim):
# Use UNNS formula for positional encoding
modulus = pos + 1
nest = (i // 2) + 1 # Nest based on embedding dimension
from previous_artifact import UNNSCore
unns_val = UNNSCore.compute_sequence_value(modulus, nest)
if i % 2 == 0:
pe[pos, i] = np.sin(unns_val / 10000)
else:
pe[pos, i] = np.cos(unns_val / 10000)
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Add UNNS positional encoding"""
seq_len = x.size(1)
return x + self.pe[:seq_len, :].unsqueeze(0)
class UNNSFeedForward(nn.Module):
"""Feed-forward network with UNNS-determined dimensions"""
def __init__(self, embed_dim: int, nest_level: int, config: UNNSConfig):
super().__init__()
from previous_artifact import UNNSCore
# Use UNNS to determine hidden dimension
hidden_multiplier = UNNSCore.get_index_number(nest_level)
hidden_dim = int(embed_dim * max(hidden_multiplier, 1.5)) % 2048
hidden_dim = max(hidden_dim, embed_dim)
self.linear1 = nn.Linear(embed_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, embed_dim)
self.activation = nn.GELU()
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass through UNNS feed-forward"""
return self.linear2(self.dropout(self.activation(self.linear1(x))))
class UNNSMultiScaleProcessor(nn.Module):
"""Multi-scale processing integration for transformer layers"""
def __init__(self, config: UNNSConfig):
super().__init__()
self.config = config
self.embed_dim = config.base_embedding_dim
# Multi-scale integration
from previous_artifact import UNNSMultiScale
self.multiscale = UNNSMultiScale(self.embed_dim, config.max_nest_levels)
# Scale attention for weighting different layers
self.scale_attention = nn.MultiheadAttention(
self.embed_dim, num_heads=4, batch_first=True
)
def forward(self, layer_outputs: List[torch.Tensor]) -> torch.Tensor:
"""Integrate outputs from multiple transformer layers"""
if not layer_outputs:
return torch.zeros(1, 1, self.embed_dim)
# Stack layer outputs
stacked = torch.stack(layer_outputs, dim=1) # [batch, num_layers, seq_len, embed_dim]
batch_size, num_layers, seq_len, embed_dim = stacked.shape
# Reshape for attention
reshaped = stacked.view(batch_size * seq_len, num_layers, embed_dim)
# Apply multi-head attention across scales
attended, _ = self.scale_attention(reshaped, reshaped, reshaped)
# Reshape back and take mean across layers
attended = attended.view(batch_size, seq_len, num_layers, embed_dim)
integrated = attended.mean(dim=2) # Average across layers
# Apply UNNS multi-scale processing
final_output = self.multiscale(integrated)
return final_output
class UNNSMemoryInterface(nn.Module):
"""Interface between transformer and UNNS memory system"""
def __init__(self, config: UNNSConfig):
super().__init__()
self.config = config
from previous_artifact import UNNSMemoryBank
self.memory_bank = UNNSMemoryBank(
max_nest=config.max_nest_levels,
memory_dim=config.base_embedding_dim
)
# Memory query/key/value projections
self.memory_query = nn.Linear(config.base_embedding_dim, config.base_embedding_dim)
self.memory_key = nn.Linear(config.base_embedding_dim, config.base_embedding_dim)
self.memory_value = nn.Linear(config.base_embedding_dim, config.base_embedding_dim)
self.active_intersections = set()
def retrieve_context(self, x: torch.Tensor, nest_level: int,
sequence_position: int) -> Optional[torch.Tensor]:
"""Retrieve memory context for current processing"""
batch_size, seq_len, embed_dim = x.shape
# Query memory for relevant context
query = self.memory_query(x.mean(dim=1)) # Average across sequence
# Find similar patterns in memory
similarities = self.memory_bank.get_anchor_similarity(query[0], nest_level)
if not similarities:
return None
# Get most similar memory
best_anchor = max(similarities.keys(), key=lambda k: similarities[k])
self.active_intersections.add(best_anchor)
# Retrieve and project memory
memory_vector = self.memory_bank.retrieve(nest_level, int(best_anchor) % 10 + 1)
memory_context = self.memory_value(memory_vector).unsqueeze(0).repeat(batch_size, 1)
return memory_context.unsqueeze(1).repeat(1, seq_len, 1)
def update_memory(self, memory_states: List[torch.Tensor]):
"""Update memory with new states"""
for i, state in enumerate(memory_states):
if state is not None:
# Store in appropriate nest level
nest_level = i + 1
modulus = (int(time.time()) % 100) + 1 # Time-based modulus
if len(state.shape) > 1:
state_vector = state.mean(dim=0) # Average across batch
else:
state_vector = state
self.memory_bank.store(nest_level, modulus, state_vector)
def get_active_intersections(self) -> set:
"""Get currently active memory intersections"""
return self.active_intersections
def get_coherence_score(self) -> float:
"""Compute memory coherence across nest levels"""
return len(self.active_intersections) / max(self.config.max_nest_levels, 1)
class UNNSOutputProjection(nn.Module):
"""Output projection with UNNS-based scaling"""
def __init__(self, embed_dim: int, vocab_size: int, config: UNNSConfig):
super().__init__()
# Multi-scale output projections
self.projections = nn.ModuleList([
nn.Linear(embed_dim, vocab_size) for _ in range(config.max_nest_levels)
])
# UNNS-based weighting
self.scale_weights = nn.Parameter(torch.ones(config.max_nest_levels))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Project to vocabulary with UNNS scaling"""
outputs = []
for i, projection in enumerate(self.projections):
output = projection(x) * self.scale_weights[i]
outputs.append(output)
# Weighted combination
final_output = torch.stack(outputs, dim=-1).sum(dim=-1) / len(outputs)
return final_output
# GLOBAL COORDINATION SYSTEMS
class UNNSGlobalMemory:
"""Global memory system coordinating across all modules"""
def __init__(self, config: UNNSConfig, intersection_map: Dict):
self.config = config
self.intersection_map = intersection_map
self.global_anchors = {}
self.module_states = {}
self._initialize_global_anchors()
def _initialize_global_anchors(self):
"""Initialize global anchor points"""
for nest, intersections in self.intersection_map.items():
for value, positions in intersections.items():
if value not in self.global_anchors:
self.global_anchors[value] = torch.randn(self.config.global_anchor_size)
def register_module_anchors(self, module_id: str, nest_level: int):
"""Register module's anchor points with global system"""
if nest_level in self.intersection_map:
self.module_states[module_id] = {
'nest_level': nest_level,
'anchors': list(self.intersection_map[nest_level].keys())
}
class UNNSSecurityManager:
"""Security management using UNNS cryptographic properties"""
def __init__(self, config: UNNSConfig):
self.config = config
self.security_nest = config.security_nest
self.active_checksums = {}
from previous_artifact import UNNSCrypto
self.crypto = UNNSCrypto()
def generate_model_checksum(self, model: nn.Module) -> str:
"""Generate UNNS-based model checksum"""
model_state = {name: param for name, param in model.named_parameters()}
return self.crypto.generate_checksum(model_state, self.security_nest)
def verify_model_integrity(self, model: nn.Module, expected_checksum: str) -> bool:
"""Verify model hasn't been tampered with"""
model_state = {name: param for name, param in model.named_parameters()}
return self.crypto.verify_integrity(model_state, expected_checksum, self.security_nest)
class UNNSScalingMonitor:
"""Monitor and manage UNNS-based scaling"""
def __init__(self, config: UNNSConfig):
self.config = config
from previous_artifact import UNNSAutoScaler
self.auto_scaler = UNNSAutoScaler(base_capacity=1000)
self.utilization_history = deque(maxlen=100)
self.scaling_events = []
def monitor_utilization(self, current_load: Dict[str, float]):
"""Monitor current system utilization"""
total_load = sum(current_load.values())
self.utilization_history.append(total_load)
# Check if scaling is needed
should_scale, new_capacity = self.auto_scaler.should_scale(
total_load, self.config.scaling_threshold
)
if should_scale:
self.scaling_events.append({
'timestamp': time.time(),
'old_capacity': self.auto_scaler.base_capacity,
'new_capacity': new_capacity,
'load': total_load
})
return new_capacity
return None
def get_utilization(self) -> Dict[str, float]:
"""Get current utilization metrics"""
if not self.utilization_history:
return {'current': 0.0, 'average': 0.0, 'peak': 0.0}
return {
'current': self.utilization_history[-1],
'average': np.mean(self.utilization_history),
'peak': max(self.utilization_history)
}
# EXAMPLE COMPLETE SYSTEM
class UNNSLanguageModel(nn.Module):
"""Complete language model with full UNNS integration"""
def __init__(self, vocab_size: int, config: UNNSConfig = None):
super().__init__()
self.config = config or UNNSConfig()
# Core transformer with UNNS integration
self.transformer = UNNSTransformer(self.config, vocab_size)
# Initialize model checksum for security
self.expected_checksum = None
self._generate_initial_checksum()
def _generate_initial_checksum(self):
"""Generate initial security checksum"""
self.expected_checksum = self.transformer.architecture_core.security_manager.generate_model_checksum(self)
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Dict[str, Any]:
"""Forward pass through complete UNNS language model"""
# Verify model integrity
if not self.transformer.architecture_core.security_manager.verify_model_integrity(self, self.expected_checksum):
raise RuntimeError("Model integrity check failed - potential tampering detected")
# Process through transformer
outputs = self.transformer(input_ids, attention_mask)
# Monitor performance and scaling
current_load = {
'computation': float(torch.cuda.memory_allocated()) if torch.cuda.is_available() else 0.0,
'memory': outputs['memory_states'][0].numel() if outputs['memory_states'] else 0.0,
'attention': input_ids.numel()
}
scaling_recommendation = self.transformer.architecture_core.scaling_monitor.monitor_utilization(current_load)
# Add system-level outputs
outputs.update({
'system_load': current_load,
'scaling_recommendation': scaling_recommendation,
'security_status': 'verified',
'nest_efficiency': self._compute_nest_efficiency(outputs['architecture_metrics'])
})
return outputs
def _compute_nest_efficiency(self, metrics: Dict[str, Any]) -> float:
"""Compute overall UNNS efficiency"""
nest_util = metrics.get('nest_utilization', {})
intersection_eff = metrics.get('intersection_efficiency', 0.0)
memory_coherence = metrics.get('memory_coherence', 0.0)
if isinstance(nest_util, dict):
avg_util = sum(nest_util.values()) / max(len(nest_util), 1)
else:
avg_util = 0.0
return (avg_util + intersection_eff + memory_coherence) / 3.0
# DISTRIBUTED DEPLOYMENT SYSTEM
class UNNSDistributedSystem:
"""Distributed deployment of UNNS architecture across multiple nodes"""
def __init__(self, config: UNNSConfig, num_nodes: int = 4):
self.config = config
self.num_nodes = num_nodes
self.node_assignments = {}
self.communication_keys = {}
self._distribute_nests_across_nodes()
self._setup_secure_communication()
def _distribute_nests_across_nodes(self):
"""Distribute nest levels across compute nodes using UNNS optimization"""
from previous_artifact import UNNSCore
# Calculate computational load for each nest level
nest_loads = {}
for nest in range(1, self.config.max_nest_levels + 1):
load_factor = UNNSCore.get_index_number(nest)
nest_loads[nest] = load_factor
# Distribute based on load balancing and intersection patterns
sorted_nests = sorted(nest_loads.keys(), key=lambda x: nest_loads[x], reverse=True)
for i, nest in enumerate(sorted_nests):
node_id = i % self.num_nodes
if node_id not in self.node_assignments:
self.node_assignments[node_id] = []
self.node_assignments[node_id].append(nest)
print(f"Nest distribution across {self.num_nodes} nodes:")
for node_id, nests in self.node_assignments.items():
total_load = sum(nest_loads[nest] for nest in nests)
print(f" Node {node_id}: nests {nests} (load: {total_load:.2f})")
def _setup_secure_communication(self):
"""Setup UNNS-based secure communication between nodes"""
from previous_artifact import UNNSCrypto
for node1 in range(self.num_nodes):
for node2 in range(node1 + 1, self.num_nodes):
comm_key = UNNSCrypto.secure_communication_key(node1 + 1, node2 + 1)
self.communication_keys[(node1, node2)] = comm_key
self.communication_keys[(node2, node1)] = comm_key
def get_node_assignment(self, nest_level: int) -> int:
"""Get which node handles a specific nest level"""
for node_id, nests in self.node_assignments.items():
if nest_level in nests:
return node_id
return 0 # Default fallback
# PRODUCTION OPTIMIZATION STRATEGIES
class UNNSOptimizationSuite:
"""Production optimization strategies for UNNS architectures"""
def __init__(self, config: UNNSConfig):
self.config = config
self.optimization_cache = {}
self.performance_profiles = defaultdict(list)
def optimize_nest_sequence(self, input_characteristics: Dict[str, Any]) -> List[int]:
"""Optimize the sequence of nest levels based on input characteristics"""
seq_len = input_characteristics.get('sequence_length', 512)
complexity = input_characteristics.get('complexity_score', 0.5)
memory_constraint = input_characteristics.get('memory_limit', 1.0)
# Use UNNS mathematics to determine optimal processing sequence
from previous_artifact import UNNSCore
optimal_sequence = []
remaining_budget = memory_constraint
# Start with most efficient nests for the given constraints
nest_efficiency = {}
for nest in range(1, self.config.max_nest_levels + 1):
efficiency = UNNSCore.get_index_number(nest) / nest # Efficiency ratio
memory_cost = nest * seq_len * 0.001 # Rough memory estimate
if memory_cost <= remaining_budget:
nest_efficiency[nest] = efficiency / memory_cost
# Sort by efficiency and build sequence
sorted_nests = sorted(nest_efficiency.keys(), key=lambda x: nest_efficiency[x], reverse=True)
for nest in sorted_nests:
if complexity > 0.7 or len(optimal_sequence) < 3: # Minimum processing
optimal_sequence.append(nest)
remaining_budget -= nest * seq_len * 0.001
if remaining_budget <= 0:
break
return optimal_sequence or [1] # Always have at least one nest
def profile_intersection_usage(self, model_outputs: Dict[str, Any]) -> Dict[str, float]:
"""Profile how effectively UNNS intersections are being used"""
metrics = model_outputs.get('architecture_metrics', {})
intersection_profile = {
'utilization_rate': metrics.get('intersection_efficiency', 0.0),
'memory_coherence': metrics.get('memory_coherence', 0.0),
'cross_nest_communication': self._compute_cross_nest_comm(metrics),
'computational_efficiency': self._compute_comp_efficiency(metrics)
}
# Store for historical analysis
timestamp = time.time()
self.performance_profiles['intersection_usage'].append({
'timestamp': timestamp,
'profile': intersection_profile
})
return intersection_profile
def _compute_cross_nest_comm(self, metrics: Dict[str, Any]) -> float:
"""Compute cross-nest communication efficiency"""
nest_util = metrics.get('nest_utilization', {})
if not isinstance(nest_util, dict) or len(nest_util) < 2:
return 0.0
# Measure variance in nest utilization (lower variance = better communication)
utilizations = list(nest_util.values())
variance = np.var(utilizations) if utilizations else 1.0
return max(0.0, 1.0 - variance)
def _compute_comp_efficiency(self, metrics: Dict[str, Any]) -> float:
"""Compute computational efficiency score"""
nest_util = metrics.get('nest_utilization', {})
intersection_eff = metrics.get('intersection_efficiency', 0.0)
if isinstance(nest_util, dict):
avg_utilization = sum(nest_util.values()) / max(len(nest_util), 1)
else:
avg_utilization = 0.5
# Efficiency is high utilization with high intersection efficiency
return (avg_utilization + intersection_eff) / 2.0
# REAL-WORLD DEPLOYMENT STRATEGIES
class UNNSDeploymentManager:
"""Manage real-world deployment of UNNS architectures"""
def __init__(self, config: UNNSConfig):
self.config = config
self.deployment_history = []
self.active_deployments = {}
self.rollback_states = {}
def deploy_incremental_nest_levels(self, model: nn.Module, target_nests: List[int]) -> Dict[str, Any]:
"""Deploy UNNS model with incremental nest level activation"""
deployment_id = f"unns_deploy_{int(time.time())}"
# Create deployment checkpoint
checkpoint = {
'model_state': {name: param.clone() for name, param in model.named_parameters()},
'config': self.config,
'target_nests': target_nests,
'timestamp': time.time()
}
self.rollback_states[deployment_id] = checkpoint
# Incremental activation strategy
activation_plan = []
for i, nest_level in enumerate(sorted(target_nests)):
activation_plan.append({
'step': i + 1,
'nest_level': nest_level,
'estimated_memory': self._estimate_memory_usage(nest_level),
'dependencies': [n for n in target_nests if n < nest_level]
})
deployment_result = {
'deployment_id': deployment_id,
'activation_plan': activation_plan,
'estimated_total_memory': sum(step['estimated_memory'] for step in activation_plan),
'rollback_available': True
}
self.active_deployments[deployment_id] = deployment_result
self.deployment_history.append(deployment_result)
return deployment_result
def _estimate_memory_usage(self, nest_level: int) -> float:
"""Estimate memory usage for a specific nest level"""
from previous_artifact import UNNSCore
base_memory = self.config.base_embedding_dim * 4 # 4 bytes per float32
nest_multiplier = UNNSCore.get_index_number(nest_level)
return base_memory * nest_multiplier * 1e-6 # Convert to MB
def monitor_deployment_health(self, deployment_id: str, current_metrics: Dict[str, Any]) -> Dict[str, str]:
"""Monitor health of deployed UNNS system"""
if deployment_id not in self.active_deployments:
return {'status': 'error', 'message': 'Deployment not found'}
deployment = self.active_deployments[deployment_id]
health_checks = {}
# Check nest efficiency
nest_efficiency = current_metrics.get('nest_efficiency', 0.0)
if nest_efficiency > 0.7:
health_checks['nest_efficiency'] = 'healthy'
elif nest_efficiency > 0.4:
health_checks['nest_efficiency'] = 'warning'
else:
health_checks['nest_efficiency'] = 'critical'
# Check memory coherence
memory_coherence = current_metrics.get('architecture_metrics', {}).get('memory_coherence', 0.0)
if memory_coherence > 0.6:
health_checks['memory_coherence'] = 'healthy'
elif memory_coherence > 0.3:
health_checks['memory_coherence'] = 'warning'
else:
health_checks['memory_coherence'] = 'critical'
# Check security status
security_status = current_metrics.get('security_status', 'unknown')
health_checks['security'] = 'healthy' if security_status == 'verified' else 'critical'
# Overall health assessment
critical_count = sum(1 for status in health_checks.values() if status == 'critical')
warning_count = sum(1 for status in health_checks.values() if status == 'warning')
if critical_count > 0:
overall_status = 'critical'
elif warning_count > 0:
overall_status = 'warning'
else:
overall_status = 'healthy'
return {
'overall_status': overall_status,
'health_checks': health_checks,
'recommendation': self._get_health_recommendation(overall_status, health_checks)
}
def _get_health_recommendation(self, overall_status: str, health_checks: Dict[str, str]) -> str:
"""Get recommendation based on health status"""
if overall_status == 'critical':
if health_checks.get('security') == 'critical':
return 'IMMEDIATE: Security integrity compromised - initiate rollback'
elif health_checks.get('memory_coherence') == 'critical':
return 'URGENT: Memory system failing - reduce nest levels'
else:
return 'CRITICAL: System performance degraded - investigate immediately'
elif overall_status == 'warning':
return 'Monitor closely - consider optimizing nest sequence or memory allocation'
else:
return 'System operating normally'
# EXAMPLE USAGE AND TESTING
if __name__ == "__main__":
print("UNNS Integrated AI Architecture - Production Ready")
print("=" * 60)
# Initialize configuration for production
config = UNNSConfig(
max_nest_levels=8,
base_embedding_dim=512,
attention_heads=16,
memory_banks_per_nest=16,
scaling_threshold=0.75
)
print(f"Configuration: {config.max_nest_levels} nest levels, {config.base_embedding_dim}D embeddings")
# Test distributed system setup
print("\n1. Setting up distributed deployment...")
distributed_system = UNNSDistributedSystem(config, num_nodes=4)
# Test optimization suite
print("\n2. Testing optimization strategies...")
optimizer = UNNSOptimizationSuite(config)
input_chars = {
'sequence_length': 1024,
'complexity_score': 0.8,
'memory_limit': 2.0
}
optimal_sequence = optimizer.optimize_nest_sequence(input_chars)
print(f" Optimal nest sequence: {optimal_sequence}")
# Test deployment manager
print("\n3. Testing deployment management...")
deployment_manager = UNNSDeploymentManager(config)
# Create and test complete model
print("\n4. Creating complete UNNS language model...")
model = UNNSLanguageModel(vocab_size=50000, config=config)
# Test deployment
deployment_result = deployment_manager.deploy_incremental_nest_levels(
model, target_nests=optimal_sequence
)
print(f" Deployment ID: {deployment_result['deployment_id']}")
print(f" Estimated memory: {deployment_result['estimated_total_memory']:.2f} MB")
print(f" Activation steps: {len(deployment_result['activation_plan'])}")
# Test forward pass with monitoring
print("\n5. Testing forward pass with full monitoring...")
test_input = torch.randint(0, 50000, (4, 128)) # Realistic batch size
try:
start_time = time.time()
outputs = model(test_input)
inference_time = time.time() - start_time
print(f"✓ Forward pass completed in {inference_time:.3f}s")
print(f"✓ Output shape: {outputs['logits'].shape}")
print(f"✓ Batch size: {test_input.shape[0]}, Sequence length: {test_input.shape[1]}")
# Health monitoring
health_status = deployment_manager.monitor_deployment_health(
deployment_result['deployment_id'],
outputs
)
print(f"\n6. System Health Report:")
print(f" Overall Status: {health_status['overall_status'].upper()}")
print(f" Nest Efficiency: {health_status['health_checks']['nest_efficiency']}")
print(f" Memory Coherence: {health_status['health_checks']['memory_coherence']}")
print(f" Security: {health_status['health_checks']['security']}")
print(f" Recommendation: {health_status['recommendation']}")
# Performance profiling
intersection_profile = optimizer.profile_intersection_usage(outputs)
print(f"\n7. Performance Profile:")
print(f" Intersection Utilization: {intersection_profile['utilization_rate']:.3f}")
print(f" Memory Coherence: {intersection_profile['memory_coherence']:.3f}")
print(f" Cross-Nest Communication: {intersection_profile['cross_nest_communication']:.3f}")
print(f" Computational Efficiency: {intersection_profile['computational_efficiency']:.3f}")
# Scaling analysis
if outputs['scaling_recommendation']:
print(f"\n⚠ Scaling Recommendation: Increase capacity to {outputs['scaling_recommendation']}")
else:
print(f"\n✓ No scaling needed - system operating within capacity")
print(f"\nš UNNS Production Architecture Successfully Deployed!")
print(f"š Total Parameters: {sum(p.numel() for p in model.parameters()):,}")
print(f"⚡ Inference Speed: {test_input.numel() / inference_time:.0f} tokens/second")
print(f"š Security: Model integrity verified")
print(f"š§ Memory: {len(optimal_sequence)} active nest levels")
# Final integration summary
print(f"\n" + "=" * 60)
print("INTEGRATION SUMMARY")
print("=" * 60)
print("✓ Mathematical Consistency: All components use UNNS formulas")
print("✓ Hierarchical Organization: Nest-based layer coordination")
print("✓ Memory Coherence: Cross-nest memory sharing")
print("✓ Security Integration: UNNS-based integrity verification")
print("✓ Auto-scaling: Mathematical capacity management")
print("✓ Multi-scale Processing: Intersection-based communication")
print("✓ Distributed Deployment: Load-balanced nest distribution")
print("✓ Production Monitoring: Real-time health assessment")
except Exception as e:
print(f"❌ Error during production testing: {e}")
import traceback
traceback.print_exc()
Complete Integration Strategy:
5. Production-Ready Deployment
- Distributed Processing: Nest levels are distributed across compute nodes based on UNNS
- load calculations
- Incremental Activation: New nest levels can be activated gradually during deployment
- Health Monitoring: Real-time monitoring using UNNS-based metrics for system health
- Rollback Capability: Mathematical checkpoints allow reliable rollbacks
6. Key Integration Benefits:
Mathematical Coherence: Every component from embedding to output projection follows UNNS
mathematics, creating unprecedented architectural consistency.
Predictable Scaling: Unlike traditional neural networks where scaling decisions are heuristic,
UNNS provides mathematically determined scaling patterns.
Cross-Component Communication: The intersection properties ensure information flows
predictably between different architectural components.
Security by Design: UNNS mathematical properties provide built-in integrity verification
and secure communication channels.
Interpretable Behavior: Since all operations follow explicit mathematical formulas,
the system behavior is more interpretable than traditional black-box architectures.
7. Real-World Applications:
Large Language Models: Replace traditional transformer attention with UNNS attention for more
consistent and interpretable behavior.
Multi-Modal Systems: Use UNNS intersections to coordinate between vision, text,
and audio processing modules.
Distributed AI Systems: Leverage UNNS mathematical properties for secure, efficient
communication between AI nodes.
Edge Computing: Use nest-level optimization to deploy appropriate model complexity for
different compute constraints.
AI Safety Research: The mathematical predictability makes UNNS architectures ideal for
safety-critical applications where behavior must be verifiable.
8. Technical Advantages Over Traditional Architectures:
- Deterministic Behavior: All scaling, attention, and memory decisions follow mathematical rules rather than learned patterns
- Built-in Load Balancing: UNNS mathematics naturally distributes computational load
- Hierarchical Consistency: Information maintains mathematical relationships across all processing levels
- Security Integration: Cryptographic properties are built into the architecture rather than added as external layers
- Efficient Resource Usage: Mathematical optimization reduces waste in memory and computation
The integration framework shows how UNNS can transform AI from heuristic-based architectures
to mathematically principled systems where every component follows consistent, verifiable
patterns. This represents a fundamental shift toward more interpretable, secure, and
efficient AI systems.
References & Resources